
1

Supplemental information, methods and figures for

“A large-scale analysis of bioinformatics code on GitHub” by Russell

et al.

Supplemental Section 1​​: Source code and project setup

All original code for this study is in the repository

https://github.com/pamelarussell/github-bioinformatics. The repository contains a single pipeline

script, src/pipeline/github_bioinformatics_pipeline.pl, that wraps all code for the study. The

pipeline script is hereafter referred to as the “Perl pipeline”. The Perl pipeline accepts a JSON

configuration file. Pipeline steps are selected for a particular run by setting boolean values

within the configuration file; this triggers other scripts in the repository to be run. A sample

configuration file is provided as src/pipeline/sample_config.json. The Perl pipeline is not

intended to be run from start to finish but simply to gather all computational steps in a single

location for reproducibility. Throughout the Supplemental Information, pointers to source code

are given by the name in the configuration file that controls the running of that code and

sometimes by the main script that implements the analysis. Scripts are indicated by their relative

path within the repository.

Several scripts require the list of repositories of interest, which is stored in a Google Sheet and

provided as ​Table S4​ and ​Table S5​. See “Authentication” below for how to incorporate the sheet

into a reproduction of the data and results in the paper.

2

Repository names

Throughout the Supplemental Information, the term “repository name” is used to refer to a

GitHub username and repository separated by a forward slash, e.g.,

“pamelarussell/github-bioinformatics”.

Authentication

In order to reproduce the data and results in the paper using the Perl pipeline and associated

code, authentication is required for Google as well as the GitHub API. Anyone wishing to

reproduce the data and results in the paper needs a Google account and a GitHub account.

Users will need to set up a project on BigQuery in order for dataset creation to work. The

Google Sheets containing the repository lists need to be saved in the user’s Google Drive

account. The Google Sheets containing the repository lists formatted for import into BigQuery

also need to be saved in the Google Drive account, and BigQuery tables need to be set up that

contain the data in these sheets. This can be done by first linking a BigQuery table to the sheet,

then querying for the entire contents of the table and saving as a regular BigQuery table for

simpler authentication. Google credentials provide access to BigQuery (where the data tables

are written and stored) as well as Google Sheets (where the repository lists are stored). Google

credentials are stored in a JSON key. GitHub credentials are stored as an OAuth token. For the

pipeline, Google and GitHub credentials are defined in the config file, not included in the public

GitHub repository for the project. R code uses the “bigrquery” package ​[1]​, which prompts for

https://paperpile.com/c/QhMSNx/RSZOL

3

Google login credentials and saves an OAuth token. The GitHub API is not accessed from any

of the R code.

Reproducibility

All data extracted from the GitHub API, with modifications described in the next paragraphs, are

available at https://doi.org/10.17605/OSF.IO/UWHX8.

Although all of the repositories studied are public on GitHub and were announced in published

articles, many do not include explicit open source licenses. Therefore, the actual contents of the

repositories cannot be included as a public dataset along with this paper. Instead, we have

recorded the specific Git version of each file so that the exact dataset can be regenerated by

other individuals. This table, provided as “file_info_main.csv” and “file_info_high_profile.csv”,

contains the Git URL pointing to the specific record for each file. Readers who wish to

reproduce the exact dataset for the paper can copy each file info table to a BigQuery table (in a

respective BigQuery project for the main or high-profile dataset) named “repos:file_info” and

continue with file content extraction in the Perl pipeline by setting “generate_file_contents” to

true in the config file (skipping “generate_file_info”, which would create the “repos:file_info” table

for current versions of repository contents).

Similarly, the GitHub Terms of Service prohibit sharing of personal identifying information

including names and e-mail addresses. (We used names for the gender analysis.) We have

published commit records as “commits_main.csv” and “commits_high_profile.csv” with

4

identifying information removed. Each published record includes an API reference for the

commit so the full record can be reconstructed from the GitHub API if needed.

All of the other data extracted from the GitHub API are also included at

https://doi.org/10.17605/OSF.IO/UWHX8; these can similarly be uploaded to BigQuery and the

data extraction steps in the Perl pipeline can be skipped. Readers who wish to generate a

dataset but do not require the exact dataset used for this paper can follow the entire Perl

pipeline, which will capture the current state of repositories.

Supplemental methods

Supplemental Section 2​​: Identification of bioinformatics repositories on GitHub

We identified GitHub repositories containing bioinformatics code by (1) identifying published

journal articles containing mentions of GitHub, (2) manually selecting bioinformatics articles from

among these results, (3) automatically extracting names of GitHub repositories within the

articles, and (4) manually curating the GitHub repositories using surrounding context in the

articles.

Motivation for search strategy

5

We settled on this strategy after several previous iterations brought various issues to light. We

initially considered searching GitHub itself for the term “bioinformatics”, but quickly realized that

(1) the resulting set of repositories shared no common benchmark making them comparable to

one another, such as having reached the point of a publication, and (2) many or most

bioinformatics repositories do not explicitly mention the term “bioinformatics”. Because of these

issues, we decided to use repositories that had been prepared and theoretically vetted along

with peer-reviewed publications; additionally, this choice allowed us to analyze article metadata

as well.

After deciding to use repositories that had been published along with papers, we attempted

several automatic search strategies. A PubMed search for the term “GitHub” revealed the fact

that a large proportion of the search results would not be considered “bioinformatics” articles by

our community. To give a few very brief examples, non-bioinformatics topics we discovered

included radiomics, pure statistics, mathematics, and articles about GitHub having no

connection to biology. We decided that it would be unacceptable to include these

non-bioinformatics articles. We then attempted to use machine learning to automatically classify

article abstracts as bioinformatics or not, using a hand-labeled set of hundreds of abstracts. The

best classifier we trained was approximately 90% accurate and still admitted sufficiently many

non-bioinformatics articles to be unacceptable. We therefore decided that it would be necessary

to hand-label each article as bioinformatics or not. We recognized the compromise of this

decision: we would have to limit the size of the dataset to accommodate hand labeling, but

believed that this would be preferable to including many irrelevant repositories that could bias

the analysis.

6

We designed a literature search strategy (described in detail in “Literature Search” below) that

would be as unbiased as possible while returning a number of results that could be reasonably

hand-labeled by two members of our group. We identified 2,679 articles containing the term

“GitHub” in the full text, and labeled 1,950 of these as “bioinformatics”.

We automatically extracted the names of 3,188 GitHub repositories mentioned in the 2,679

articles (described in “Automatic extraction of repository names from articles” below). Again, we

quickly realized that many of these repositories should not be included in our dataset (even if

the article was a bioinformatics article), the most common reason being that authors would

mention repositories they had had no part in developing. (An important goal of our analysis was

to analyze repositories along with the paper in which they were first published.) We therefore

manually labeled each GitHub repository as being part of the work described in the paper or not.

Finally, as briefly mentioned above, part of our analysis depended on identifying the single

paper that first announced each repository. Therefore, in the small number of cases where a

repository was mentioned in multiple distinct papers, we used the original article announcing the

repository (described in “Manual curation of repository names” below).

Table S4 lists the labels associated with each step of this decision process for each article and

repository name.

Literature search

7

The goal of the literature search was to identify and collect articles that mention the term

"GitHub" in the title, abstract or anywhere in the full text. Because the primary biomedical

databases (PubMed, Embase) only contain article metadata (title, abstract, etc.) and not full

text, we took a two-pronged approach. We designed a search strategy that looked for the term

"GitHub" in the title/abstract, but also included computer programming terminology that could

indicate the use of "GitHub" in the full text. To identify the relevant proxy language to search for,

we used three approaches. First, we looked at citations that did indeed mention “GitHub” and

harvested relevant associated or surrounding language. Second, we ran the search “GitHub” in

PubReMiner to look for other text or MeSH terms that frequently appeared in citations that

mention “GitHub”. Finally, we relied on our content knowledge to identify other relevant terms.

Because of the laborious nature of locating and processing large batches of full-text PDFs, we

designed the literature search to return at most 30,000 citations. Literature searches were

performed on 20 June 2017 in PubMed and Embase.com. Embase contains MEDLINE citations

as well as citations unique to Embase. For both searches, the date range was set to

2008-present because GitHub was launched in 2008. No other limits were applied. The PubMed

search simply looked for the term "GitHub" in all fields and yielded 1,821 results after

deduplication. The Embase strategy searched the term "GitHub" in addition to other terms

related to computer programming and software. This search served the dual purpose of locating

the term "GitHub" in the title/abstract of Embase-only citations as well as identifying citations in

both MEDLINE and Embase that had some chance of mentioning GitHub in the full text. The

Embase search yielded 26,505 results after deduplication. Both searches yielded a combined

total of 28,326 unique citations.

8

The search performed in Embase was the following:

“((algorithm:ti,ab OR toolkit:ti,ab) AND (code:ti,ab OR software:ti,ab)) OR (analysis:ti,ab AND

next:ti,ab AND (framework:ti,ab OR pipeline:ti,ab OR software:ti,ab OR tool:ti,ab)) OR

'command line':ti,ab OR ((framework OR 'freely available' OR pipeline OR 'publicly available' OR

workflow) NEAR/4 (code OR software)):ti,ab OR github*:ti,ab OR 'open source':ti,ab OR

'programming language':ti,ab OR (software:ti,ab AND next:ti,ab AND (application:ti,ab OR

framework:ti,ab OR package:ti,ab OR pipeline:ti,ab OR program:ti,ab OR suite:ti,ab OR

tool:ti,ab)) OR 'source code':ti,ab OR 'web app*':ti,ab AND [2008-2017]/py”

Due to a searcher error, not identified until after citation processing and analysis, the intended

adjacency operator "next" was treated as a text word by Embase and “AND”-ed together with

other search terms within the respective scope. This error did not affect the search for "GitHub"

in the title/abstract. Rather it required the word "next" to appear with the associated

computer/software terms. This limited overall search results, but kept the search within the

manageable 30,000 citation range.

All citations were exported to EndNote X7. EndNote's full-text harvesting tool was used to batch

harvest PDFs. No manual harvesting of PDFs was performed. 18,764 full-text PDFs were

located by EndNote. All citations containing "GitHub" in the title/abstract and all located PDFs

were exported for external programmatic analysis. We identified 2,679 articles containing the

case-insensitive term “GitHub” somewhere in the full text.

Definition of bioinformatics

9

A detailed list of bioinformatics topic categories was compiled. First, the published scope of the

journal ​Bioinformatics​ was downloaded on 25 June 2017 from ​[2]​. Each category in the journal

scope, along with its detailed description, was included. Second, a few additional categories

were taken from the Wikipedia article on “Bioinformatics” on 25 June 2017 ​[3]​ (stable URL).

Finally, an additional topic “Pipelines, wrappers, extensions, and utilities” was included to

capture these software papers. Descriptions of each category taken from their sources are in

Table S1​.

Manual curation of bioinformatics articles

Each article identified in the literature search that contained the term “GitHub” in the full text was

manually evaluated to determine if its contents pertained to bioinformatics topics. The set of

articles was divided into two subsets and each subset was evaluated by one person (R.J. and

P.R.) due to the large time commitment involved. For each article, the title and abstract were

examined. The article was classified as “bioinformatics” if the title or abstract treated at least one

of the topics in the definition of bioinformatics. The results of the manual classification are

presented in ​Table S2​.

Automatic extraction of repository names from articles

Repository names were automatically extracted from all articles identified in the literature

search, including those not identified as “bioinformatics”. The script was run through the Perl

pipeline by setting “extract_repos_from_lit_search” to true in the config file. Briefly, the operation

https://paperpile.com/c/QhMSNx/bkbSE
https://paperpile.com/c/QhMSNx/b4kQy

10

of the script is as follows. The XML files of article metadata exported from EndNote were parsed

and metadata for all articles were extracted. For each article, first, an attempt was made to

identify repository names in the abstract by searching for and parsing matches to one of the

regular expressions "github\.com/([a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+)" or

"([a-zA-Z0-9_-]+)\.github\.io/([a-zA-Z0-9_-]+)". If repository names were found in the abstract,

these were returned and no attempt was made to analyze the full text. If no repository names

were found in the abstract, the full text PDF was analyzed using the Python package pdfminer

[4]​; matches to the same regular expressions were identified and parsed to extract repository

names. The script saved the results to a table on BigQuery and this table was saved as a

Google Sheet. The table is available as ​Table S3​.

Manual curation of repository names

Spreadsheet for manual curation of repository names.

The final curation is presented as ​Table S4​. To create this table, the manual curation of

bioinformatics articles was joined to the automatic extraction of repository names from articles to

identify automatically extracted repository names contained in bioinformatics articles. A Google

spreadsheet was created containing the join. From that point, this spreadsheet was manually

adjusted (​Table S4​ contains a sheet “field_definitions” that defines the columns and explains

which columns have been manually modified). The column “use_repo” in the spreadsheet

contains the ultimate directive of whether the repository was to be included in the final dataset

or not, and could be manually set for various reasons described below. The complete definition

of the logic in this column is provided in “field_definitions”.

https://paperpile.com/c/QhMSNx/fbd74

11

Manual deduplication of repository names.

Duplicate repository names were identified. Duplicates could occur when the same article was

returned multiple times by the literature search, leading to multiple EndNote records. This could

also happen if the same repository was mentioned in multiple different articles. In these cases,

records were manually deduplicated. If the same article was returned from multiple databases,

the PubMed record was kept and the other records were deleted (it was always possible to keep

a PubMed record). If the same article was in the same database with two different dates, the

earlier record was kept in “use_repo” and the later record was not used. In more complex cases,

such as multiple distinct articles mentioning the same repository, the articles were manually

examined and at most one article was set to be used in “use_repo”; the article chosen was the

one originally announcing the repository.

Manual checking and correction of repository names.

For each repository name in a bioinformatics article, the surrounding context of the abstract or

article was manually examined to determine if the repository contained code for the article, as

opposed to the article mentioning an outside repository. This determination was manually

entered in the column “repo_from_pdf_is_code_for_bioinf_paper” of the spreadsheet provided

as ​Table S4​. If a repository name had been discovered from the article abstract, only the

abstract was examined during this manual process; the PDF was not examined. If a repository

name had been discovered from the full text PDF, the entire PDF was examined. In some

cases, errors in repository names were discovered during this manual curation process; these

were manually fixed where possible. (For example, errors in repository names could be caused

by ambiguously hyphenated line breaks or special formatting such as indented bullets in the

12

PDF, or missing spaces after the repository name in the abstract downloaded from a literature

database.)

Special issues for PDFs.

In addition to the repositories automatically detected from the PDF, additional repositories not

identified by the automatic process were added by searching for the string “github”; these could

have been missed by the automatic script due to the issues mentioned previously. Therefore, in

order for any repository names to be included from a PDF, at least one repository name needed

to have been identified automatically. PDFs for which no repository names were automatically

identified were not manually examined and therefore were not allowed to contribute any

repository names to the final dataset.

Special situations during manual curation.

● In some cases, if multiple repositories were mentioned in an article and it was impossible to

tell from context whether the repositories were developed by the article authors, we viewed

the repositories on github.com to evaluate contributors to the repositories.

● Articles published in the journal ​F1000​ often include pointers to two code repositories: one

containing stable frozen code at the time of publication and another containing the

development version. In these cases, the development version was used and the stable

version at the time of publication was not used, for consistency with other repositories that

are all theoretically development versions.

● BioJava ​[5]​ and BioJS ​[6]​ are open source projects that collect multiple components from

different contributors under a single parent GitHub repository (biojava/biojava and

biojs/biojs, respectively). Components of these projects were not used because our analysis

https://paperpile.com/c/QhMSNx/8ee0G
https://paperpile.com/c/QhMSNx/7WfmZ

13

is performed at the repository level, and components of these projects are subdirectories

under a common repository.

Checking validity of repository names

After the manual curation of repository names, a script was run to verify the current existence of

repositories marked to be used in the final dataset. The script was run in the Perl pipeline by

setting “check_repo_existence” to true in the config file. The script prints a list of repositories

whose existence could not be verified through the GitHub API. Most of these turned out to have

moved or changed names; these repository names were manually corrected. This step also

revealed more repository names containing errors due to the automatic parsing of the abstract

or PDF; these were manually corrected. Repositories that could not be found at all were not

used. After the manual modifications in this step, no issues with repository names were

identified by the script.

Identification of high-profile bioinformatics repositories

In addition to the repositories identified through the literature search, we curated a set of

“high-profile” projects: highly respected and well-known tools in the bioinformatics community.

Most of these projects were not identified in the literature search. In many cases, high-profile

projects were not hosted on GitHub at the time of publication. These projects also could have

been absent from the literature search because the papers did not mention GitHub, because the

papers did not match the heuristics used in the search, or because the code is not publicly

available.

14

To avoid subjective judgements or omissions of popular tools, we chose to define high-profile

projects as those generating a high volume of discussion in the leading online forum for

discussion of bioinformatics topics, Biostars ​[7]​. We accessed Biostars on 10 February 2018,

compiling a list of standalone software tools that had been tagged in posts at least 100 times.

We chose to draw the boundary at standalone tools because this provided a clean criterion we

could use to judge the sometimes ambiguous Biostars tags, but acknowledge that our chosen

criterion excludes a few popular libraries and conglomerations such as Bioconductor and

Galaxy. The list included 27 tools. Through a manual web search, we were able to identify a

primary GitHub repository hosting the code for 21 of these tools. Four tools do not appear to be

hosted publicly on GitHub, while two tools are included under another repository already in the

set of 21. In one case, Samtools ​[8]​, the project was spread across multiple GitHub repositories

and we curated three repositories containing the main code for the project, bringing the number

of repositories to 23. Three high-profile repositories (alexdobin/STAR, bcgsc/abyss, and

chrchang/plink-ng) are also in the dataset curated from the literature search; they are included

in both sets for analysis. We performed a manual search to identify the original publications

describing each project; we were able to find publications for 21 of the 23 repos, while two

remain unpublished. Details are presented in ​Table S5​. This set of 23 repositories is referred to

as the “high-profile” dataset, while the set identified through the literature search is referred to

as the “main” dataset.

Extraction of article metadata

https://paperpile.com/c/UeUqsO/wexEx
https://paperpile.com/c/QhMSNx/aiXr1

15

Metadata for articles associated with each repository were extracted from NCBI databases

using the RISmed R package ​[9]​ with the script src/R/ncbi/paper_metadata_eutils.R. The script

was run through the Perl pipeline separately for the main and high-profile datasets by setting

“query_eutils_article_metadata” to true in the config file. Metadata retrieved include database

IDs, journal information, funding information, relevant dates, article abstract, and number of

citations in PubMed Central, the National Library of Medicine’s archive of open access full-text

biomedical and life sciences articles.

Supplemental Section 3​​: Extraction of repository data from GitHub API

Several types of data were extracted from the GitHub REST API v3 ​[10]​; each is described in a

subsection below. These scripts were run separately for the main and high-profile datasets;

each dataset was stored in a separate BigQuery project. The BigQuery projects and empty

datasets within each project were created manually in the BigQuery web interface. Data for the

high-profile dataset were extracted approximately four months after the main dataset.

Workflow components common to all data types

Python scripts were used to obtain each type of data. All scripts use the gspread library ​[11]​ to

read the list of repository names from the Google Sheet containing the manual curation of

repositories (​Table S4​). All scripts make Curl requests to the GitHub API using the PycURL

library ​[12]​ and parse the JSON responses to convert information to flat records. All scripts push

data to tables in Google BigQuery using the BigQuery-Python library ​[13]​.

https://paperpile.com/c/QhMSNx/90pMK
https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/0is9T
https://paperpile.com/c/QhMSNx/yTakO
https://paperpile.com/c/QhMSNx/xBrNz

16

Repository-level metrics

Repository-level metrics were extracted from the GitHub Repositories API ​[10]​ and pushed to a

BigQuery table by the script src/python/gh_api_repo_metrics.py. The script was run through the

Perl pipeline by setting “generate_repo_metrics” to true in the config file. Repository-level

metrics include (1) repository name, (2) GitHub API URL for the repository, (3) HTML URL for

the repository, (4) repository description, (5) whether the repository is a fork, (6) number of

stargazers, (7) number of watchers (legacy endpoint that now returns the number of stargazers),

(8) number of forks, (9) number of open issues, (10) number of subscribers (users who have

subscribed to notifications; previously known as “watchers”), (11) SHA-1 hash of the most

recent commit reference to the master branch, and (12) time at which the information was

accessed.

File information

Information on individual files contained in each repository was extracted from the GitHub

Contents API ​[10]​ and pushed to a BigQuery table by the script src/python/gh_api_file_info.py.

The script was run through the Perl pipeline by setting “generate_file_info” to true in the config

file. Recursive requests were constructed in order to access the entire directory structure of

each repository. Information for regular files and symbolic links was retrieved. Submodules were

not included because these often contain code not developed by the authors of the main

repository. Information retrieved for each file includes (1) repository name, (2) file name, (3) file

path, (4) file SHA-1 hash, (5) file size, (6) GitHub API URL for the file, (7) HTML URL for the file,

https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/yGyFW

17

(8) Git URL for the file, (9) download URL for the file, (10) file type, (11) SHA-1 hash of the most

recent commit reference to the master branch, and (12) time at which the information was

accessed.

File creation dates

Initial commit timestamps for each file were extracted from the GitHub Repositories API ​[10]​ and

pushed to a BigQuery table by the script src/python/gh_api_file_init_commit.py. The script was

run through the Perl pipeline by setting “generate_file_init_commits” to true in the config file.

Commits affecting each file were accessed via the repository name and path as stored in the file

information table; the oldest time at which a committer committed the file was stored.

File contents

Contents of individual files were extracted from the GitHub Repositories API ​[10]​ and pushed to

a BigQuery table by the script src/python/gh_api_file_contents.py. The script was run through

the Perl pipeline by setting “generate_file_contents” to true in the config file. File contents were

accessed via their Git URL as stored in the file information table, so that records in the two

tables refer to exactly the same versions of each file. This was important due to the duration of

time needed to extract all the file contents. Information retrieved for each file includes (1)

repository name, (2) file name, (3) file path, (4) file SHA-1 hash, (5) Git URL for the file, (6) file

contents, and (7) time at which the information was accessed. File contents were decoded from

the Base64 encoding returned by the GitHub API. Files whose contents exceed 999KB in size

https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/yGyFW

18

were included in the results table but contents were marked as “null” due to the 1MB row size

limit in BigQuery and also the fact that almost none of these files contain source code.

Commits

Commit records were extracted from the GitHub Repositories API ​[10]​ and pushed to a

BigQuery table by the script src/python/gh_api_commits.py. The script was run through the Perl

pipeline by setting “generate_commits” to true in the config file. Attributes extracted for each

commit were (1) repository name, (2) commit SHA, (3) commit API URL, (4) commit HTML URL,

(5) commit comments URL, (6) commit message, (7) comment count, (8) author login, (9) author

ID, (10) author name, (11) author email, (12) author commit date, (13) author API URL, (14)

author HTML URL, (15) author type, (16) committer login, (17) committer ID, (18) committer

name, (19) committer email, (20) committer commit date, (21) committer API URL, (22)

committer HTML URL, (23) committer type, (24) SHA-1 hash of the most recent commit

reference to the master branch, and (25) time at which the information was accessed. The

commit author and committer may be different if the author submitted the commits via a pull

request. Only commits to the default branch (usually “master”) were included.

Licenses

Repository licenses were extracted from the GitHub Repositories API ​[10]​ and pushed to a

BigQuery table by the script src/python/gh_api_licenses.py. The script was run through the Perl

pipeline by setting “generate_licenses” to true in the config file. For each repository, information

extracted included (1) repository name, (2) license, (3) SHA-1 hash of the most recent commit

https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/yGyFW

19

reference to the master branch, and (4) time at which the information was accessed. License

information is returned by the API when it can be detected from the repository’s license file.

Repositories without a detectable license were recorded as “null” in the BigQuery table.

Note on iterating through files

We needed to pull down the contents of each file from our contents table in BigQuery and save

it to a local file in order to analyze it with cloc (​Supplemental Section 5​). Although the Google

Cloud API supports iterating through records in a BigQuery table, there is a limit on record size

that was exceeded by many of our contents records. Therefore, we exported the contents table

to multiple CSV files on Google Cloud Storage; our analysis script downloaded these CSV files

locally one at a time to analyze the subset of files contained therein. Therefore, people utilizing

our analysis code would need to replicate the process of saving the contents table to multiple

CSV files in Google Cloud Storage.

Supplemental Section 4​​: Topic modeling of article abstracts

We used machine learning to infer topics for abstracts of the articles announcing each

repository in the main dataset. Abstracts for the single curated article for each repository were

obtained from the EndNote metadata (see ​Supplemental Section 2​). Treating each abstract as a

document, we created a latent Dirichlet allocation (LDA) model ​[14]​ using the “topicmodels” R

package ​[15]​ and following the workflow in ​[16]​. In LDA, the symbol ​β​ refers to the probability of

a given term being generated from a given topic, and ​γ​ is the probability that a given document

https://paperpile.com/c/QhMSNx/Kh7wf
https://paperpile.com/c/QhMSNx/5IaNg
https://paperpile.com/c/QhMSNx/7eenc

20

comes from a given topic. ​From the LDA model, we identified terms whose ​β​ value for their top

topic was at least four times larger than the second highest topic. We manually examined the

top terms for each topic from this list of topic-specialized terms. We tried several values for ​k​ in

the model (the number of topics) and chose ​k ​= 8 for further analysis due to its maximal

coherence of concepts within the top terms. We manually assigned a label to each of the eight

topics that captures a summary of the top terms. We classified each article abstract into one or

more topics by taking all pairs of abstracts and topics with ​γ​ equal to at least 0.25. The topic

modeling analysis and figures (​Fig 2​, ​Fig A​, ​Fig B​, ​Fig C​, ​Fig D​) were generated in

paper/scripts/topics.Rmd.

Supplemental Section 5​​: Programming languages

We attempted to identify a programming language, count lines of code and comment, and

extract comment-stripped source code for each file. The script

src/python/cloc_and_strip_comments.py calls the tool cloc (version 1.72) ​[17]​ to analyze the

contents of each file in each repository. The script was run through the Perl pipeline by setting

“run_cloc” to true in the config file. For each file, cloc attempts to identify the programming

language, number of lines of code, number of comment lines, number of blank lines, and

comment-stripped source code. Files with extensions indicating they did not contain source

code (e.g. “.jpg”, “.pdf”, “.ppt”) were skipped and not run through cloc. Some files with identical

contents were duplicated in the dataset, usually appearing multiple times in the same repository

with different paths and/or file extensions. In cases where cloc identified different language or

line counts for these duplicate files (probably due to file extension heuristics used in cloc), all

https://paperpile.com/c/QhMSNx/6txDp

21

copies of the file were skipped. A similar filtering was performed on the comment-stripped code

results from cloc. Results from cloc were saved to tables in BigQuery. This information was

joined to other file metadata with the script src/python/run_bq_queries_analysis.py by setting

“run_bq_analysis_queries” to true in the config file for the Perl pipeline.

Language execution modes were obtained from ​[18]​. Type systems were obtained from ​[19]​,

and due to the absence of the popular language R from this table, R was manually added and

labeled as “dynamic” and “unsafe”. In order for the information to match the programming

languages assigned to our data by cloc, in some cases language information records were

copied to match the language names returned by cloc. These tables, provided as ​Table S6​ and

Table S7​, were saved as Google Sheets. In order to reproduce the results in the paper, the

tables must be copied to tables in BigQuery using the same procedure described in

Supplemental Section 1​.

Fig 3​ and ​Fig E​ were generated in paper/scripts/analysis.Rmd, building on analysis performed in

paper/scripts/repo_features.R.

Supplemental Section 6​​: Developer communities

We identified the number of commit authors and outside contributors (commit authors who are

never committers) in the commit records for each repository. For commit authors, we attempted

to count unique people by collapsing users with the same name or login, as individuals can

contribute to a repository under multiple aliases (for example, from multiple devices with

https://paperpile.com/c/QhMSNx/nuoTs
https://paperpile.com/c/QhMSNx/5v3Ca

22

different default name settings). For outside contributors, we counted commit authors whose

author ID is never a committer ID for the repository. Counts of commit authors and outside

contributors were calculated in paper/scripts/repo_features.R. The counts of forks, subscribers

and stargazers were extracted directly from the GitHub API in

src/python/gh_api_repo_metrics.py by setting “generate_repo_metrics” to true in the config file

for the Perl pipeline.

Supplemental Section 7​​: Gender analysis

Inferring genders

The script src/R/gender/infer_gender.R attempts to infer a gender for each commit author,

committer, and paper author in the dataset, then pushes the results to a BigQuery table. The

script was run for the main and high-profile datasets through the Perl pipeline by setting

“infer_gender” to true in the config file. We used the Genderize.io API ​[20]​, which is a paid

service above a certain usage rate; an API key is required for the script to function. Genderize

accepts a first name and optional language and country, and returns a gender call along with

the estimated probability of correctness. Although many GitHub users provide their geographic

location as a free-form text field and articles include academic affiliations for authors, we chose

not to use this information because (1) many developers and researchers do not live in their

home country, making this information potentially misleading, and (2) it is challenging to convert

free-form text to uniform country codes. The result of this decision is that we lack gender calls

for some ambiguous names that could possibly be resolved by adding accurate geographic

https://paperpile.com/c/QhMSNx/D6xjN

23

information. We note that we were only able to obtain author lists for 1,573 articles for the main

dataset (covering 1,658 repositories) and and 18 articles for the high-profile dataset (covering

21 repositories) (see Extraction of article metadata), and that some author lists were not usable

for gender analysis because they list first initials only. We did not use the original EndNote

citations for author gender because they included first initials only.

We submitted first names (the first word before whitespace) to Genderize and accepted gender

calls with a worldwide probability of 0.8 or higher. The main dataset contains 13,425 unique

strings in the “author name” and “committer name” fields of the commit records and the author

names of articles. Several cleaning steps reduced this to 9,286 strings that were likely to

represent full names as opposed to other information such as usernames or e-mail addresses.

Of these, we were able to confidently infer a gender for 7,747 unique names. Similarly, the

high-profile dataset contains 1,145 unique names, 881 after cleaning, and 775 for which we

were able to infer a gender. We note that, based on manual observation, there may be a slight

bias against identifying genders for non-anglophone names. We also note that a few individuals

appear to be in the dataset more than once with different ways of writing their name, but these

are very rare. We were able to confidently infer a gender for 83.4% of cleaned names in the

main dataset and 88.0% of cleaned names in the high-profile dataset.

Analysis of developer and author gender

Code for this analysis is in paper/scripts/gender.Rmd, which also created ​Fig 5​.

Developers, commits, and paper authors by gender

24

For the gender breakdown of developers, we counted unique full names of authors and

committers, collapsing people with the same name or login, and ignoring other identifying

information such as email address. Although we could theoretically be falsely collapsing multiple

individuals with the same name, we find that it is much more common for the same individual to

exist in the dataset with multiple aliases. For commits, we joined commit records to genders by

the full name of the commit author, and counted individual commits. For paper authors, we

counted individual authorships on papers announcing the repositories.

Team composition

We analyzed team composition for the 504 projects in the main dataset for which we could infer

a gender for at least 75% of developers (collapsing developers with the same name or login)

and 75% of paper authors. We analyzed diversity for the 602 repositories in the main dataset for

which we could infer a gender for at least 75% of developers. We defined team types as “solo

female” if the team consisted of one woman, “solo male” if the team consisted of one man, “all

female” if no individuals were identified as male (individuals with no gender call may actually be

male), “all male” if no individuals were identified as female, “majority female” if more individuals

were identified as female than male, “majority male” if more individuals were identified as male

than female, and “equal” if the same number of female and male individuals were identified.

Gender diversity

We quantified gender diversity using the Shannon index ​[21]​. The Shannon index was originally

developed to quantify entropy in information theory and has been been widely used across a

variety of scientific disciplines to measure diversity of categories within a set or population,

including being used to quantify gender diversity in the social sciences ​[22,23]​. We calculated

https://paperpile.com/c/QhMSNx/6QyjP
https://paperpile.com/c/QhMSNx/qDqjm+x8fEC

25

the Shannon index for gender diversity within developer teams (defined as the set of unique

individuals contributing to a particular repo) and within commits (defined as the gender of the

author of each individual commit to a repo, where individual authors are counted once per

commit).

Supplemental Section 8​​: Commit dynamics

We defined project duration as the time span between the first and last commit timestamps

(author commit date) for the repo at the time we extracted the data. This was accomplished by

the script src/python/run_bq_queries_analysis.py. The script was run through the Perl pipeline

by setting “run_bq_analysis_queries” to true in the config file. We identified the initial commit

time for each file by taking the earliest timestamp of all commits touching the file; this was

accomplished with the script src/python/gh_api_file_init_commit.py by setting

“generate_file_init_commits” to true in the config file. Metrics describing monthly activity (mean

commits per month, max consecutive months with and without commits, mean new files per

month) are with respect to the number of months in the project duration. These were calculated

in paper/scripts/repo_features.R. ​Fig 6​ was created in paper/scripts/analysis.Rmd.

Supplemental Section 9​​: Proxy for project impact

We defined the variable “commits after publication” to be true if the latest commit timestamp at

the time we accessed the data was after the day the associated article appeared in PubMed.

26

Articles were identified and article metadata were extracted as described in ​Supplemental

Section 2​. Repository data were extracted from the GitHub API as described in ​Supplemental

Section 3​. ​Fig 7​ was created in paper/scripts/analysis.Rmd. The variables displayed in each

panel were calculated in paper/scripts/repo_features.R.

Supplemental figures

27

Fig A. Topic modeling of article abstracts in the main dataset.​​ The results of a topic

modeling analysis of article abstracts for the main dataset are shown. We treated each abstract

as a document and created an eight-topic latent Dirichlet allocation model ​[14]​. ​β​ represents the

probability of a given term being generated from a given topic. The figure shows top terms that

are sufficiently exclusive to each topic. For each topic, the listed terms have the top ten ​β​ values

such that ​β​ is at least four times the ​β​ value of the second highest topic for the term. (For

https://paperpile.com/c/QhMSNx/Kh7wf

28

example, the term “data”, which has high ​β ​values for several topics, is excluded.) The reported

number of repositories for each topic is the number of articles whose abstract has a ​γ​ value

(probability of coming from the topic) of at least 0.25; articles may be associated with more than

one topic. The topic labels were designated manually after examining the top terms. The figure

was created in paper/scripts/topics.Rmd.

Fig B. Programming languages and article topics in the main dataset.​​ Each repository is

associated with the article that announced it. We ran topic modeling on article abstracts; see

29

Supplemental Section 4​. The size of each dot represents the total number of bytes of code in

repositories in the main dataset whose corresponding article is associated with the given topic.

Only languages included in at least 50 main repositories are displayed. Articles can be

associated with more than one topic; in that case, the code is counted separately for each topic.

The figure was created in paper/scripts/topics.Rmd.

30

Fig C. Article topics and journals in the main dataset.​​ The size of each dot represents the

number of articles published in the given journal that are associated with the given topic. Only

the ten most common journals are included. Articles can be associated with more than one

topic; in that case, the journal is counted for each topic. ​The figure was created in

paper/scripts/topics.Rmd.

31

Fig D. Article topics by year in the main dataset. ​​For each repository, the year of the first

commit to the repository and the year the associated paper appeared in PubMed are shown.

Articles associated with multiple topics are included in the plot for each topic. ​The figure was

created in paper/scripts/topics.Rmd.

32

Fig E. Amount of code by programming language.​​ The total amount of code by programming

language is shown for main and high-profile repositories. The amount of code is the total size in

bytes of all files identified with the language by cloc (see Methods). Only languages included in

at least 50 main repositories are displayed. The large amount of code in C and C++ headers for

the main repositories is largely due to two repositories that contain entire copies of the Boost

C++ libraries ​[24]​ within the repo; this accounts for nearly half of the ~500Mb of code reported

here. ​The figure was created in paper/scripts/analysis.Rmd.

https://paperpile.com/c/QhMSNx/4WfKl

33

Fig F. Language features. ​​We attempted to identify a programming language for each file in

each repository. Language properties were determined for a subset of languages. The figure

counts files whose language is associated with a type system and execution mode. Separate

plots display total file size in bytes and total number of files. ​(​​See ​Supplemental Section 5​.) ​The

figure was created in paper/scripts/analysis.Rmd.

34

Fig G. Outside commit authors. ​​Various measures of community engagement are plotted

against the number of outside commit authors (commit authors who are never committers to the

repository). Outside commit authors are determined from commit records for each repository by

comparing author IDs to the full set of committer IDs for the repository. Each dot represents one

repository or a set of repositories with the same values for the variables. We added one to the

vertical axis variables to facilitate plotting on a log scale due to many zero values. The pearson

correlation and associated p-value are displayed for each variable versus the number of outside

commit authors. See ​Fig 2​ legend for the explanation of forks, subscribers and stargazers. ​The

figure was created in paper/scripts/analysis.Rmd.

35

Fig H. Distribution of teams by gender composition. ​​Developer teams are defined as the set

of unique commit authors contributing to the default branch of each repository. Paper authors

are the set of authors listed on the paper announcing the repository. The figure only includes

515 teams for which we could infer a gender for at least 75% of developers and 75% of paper

authors. People with no inferred gender are not counted when determining categories for each

team. ​The figure was created in paper/scripts/gender.Rmd.

36

Fig I. Gender diversity and team size in the main dataset. ​​Developer teams are defined as

the set of unique commit authors contributing to the default branch of each repository. We only

include 615 teams for which we could infer a gender for at least 75% of developers. The

Shannon diversity index is used as a measure of gender diversity within each team. The

maximum possible value of the Shannon index with two categories is ln(2) = 0.69, which is

achieved for any team with equal numbers of female and male developers. Developers with no

inferred gender are not counted when calculating team size or gender diversity. ​The figure was

created in paper/scripts/gender.Rmd.

37

Fig J. Repository licenses.​​ Licenses were extracted from the GitHub API, which returns a

license for a repository if the license can be automatically determined from a license file.

Repositories with no detectable license are counted under “NA”. ​The figure was created in

paper/scripts/analysis.Rmd.

38

Fig K. Commit message content in the main dataset. ​​We evaluate whether commit

messages contain error-related keywords as defined in ​[25]​. Commits are presented according

to their relative timing with respect to the publication of the associated article (negative times are

before article publication). Each dot represents all commits across the entire dataset for a

10-day interval with respect to the publication date. The figure shows an increase in overall

commits approaching paper publication, but no disproportionate increase in bug fix commits as

defined in ​[25]​.

https://paperpile.com/c/QhMSNx/7wcL
https://paperpile.com/c/QhMSNx/7wcL

39

40

References

1. bigrquery [Internet]. Github; Available: ​https://github.com/r-dbi/bigrquery

2. Scope Guidelines | Bioinformatics | Oxford Academic [Internet]. [cited 19 Mar 2018].
Available: ​https://academic.oup.com/bioinformatics/pages/scope_guidelines

3. Wikipedia contributors. Bioinformatics. In: Wikipedia, The Free Encyclopedia [Internet]. 9
Jun 2017 [cited 19 Mar 2018]. Available:
https://en.wikipedia.org/w/index.php?title=Bioinformatics&oldid=784735926

4. pdfminer 20140328 : Python Package Index [Internet]. [cited 19 Mar 2018]. Available:
https://pypi.python.org/pypi/pdfminer/

5. Prlić A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin PV, et al. BioJava: an
open-source framework for bioinformatics in 2012. Bioinformatics. 2012;28: 2693–2695.
doi:​10.1093/bioinformatics/bts494

6. BioJS [Internet]. [cited 19 Mar 2018]. Available: ​https://biojs.net/

7. Parnell LD, Lindenbaum P, Shameer K, Dall’Olio GM, Swan DC, Jensen LJ, et al. BioStar:
an online question & answer resource for the bioinformatics community. PLoS Comput Biol.
2011;7: e1002216. doi:​10.1371/journal.pcbi.1002216

8. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079.
doi:​10.1093/bioinformatics/btp352

9. Kovalchik S. RISmed: download content from NCBI databases. R package version. 2015;

10. GitHub API v3 | GitHub Developer Guide [Internet]. Github; Available:
https://developer.github.com/v3/

11. Burnashev A. gspread [Internet]. Github; Available: ​https://github.com/burnash/gspread

12. Kjetil Jacobsen MFXJO. PycURL Home Page [Internet]. [cited 19 Mar 2018]. Available:
http://pycurl.io/

13. Treat T. BigQuery-Python [Internet]. Github; Available:
https://github.com/tylertreat/BigQuery-Python

14. Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. J Mach Learn Res. 2003;3:
993–1022. Available: ​http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

15. Grün B, Hornik K. topicmodels: An R Package for Fitting Topic Models. Journal of Statistical
Software, Articles. 2011;40: 1–30. doi:​10.18637/jss.v040.i13

16. Silge J, Robinson D. Text Mining with R: A Tidy Approach [Internet]. “O’Reilly Media, Inc.”;

http://paperpile.com/b/QhMSNx/RSZOL
https://github.com/r-dbi/bigrquery
http://paperpile.com/b/QhMSNx/bkbSE
http://paperpile.com/b/QhMSNx/bkbSE
https://academic.oup.com/bioinformatics/pages/scope_guidelines
http://paperpile.com/b/QhMSNx/b4kQy
http://paperpile.com/b/QhMSNx/b4kQy
https://en.wikipedia.org/w/index.php?title=Bioinformatics&oldid=784735926
http://paperpile.com/b/QhMSNx/fbd74
https://pypi.python.org/pypi/pdfminer/
http://paperpile.com/b/QhMSNx/8ee0G
http://paperpile.com/b/QhMSNx/8ee0G
http://paperpile.com/b/QhMSNx/8ee0G
http://dx.doi.org/10.1093/bioinformatics/bts494
http://paperpile.com/b/QhMSNx/7WfmZ
https://biojs.net/
http://paperpile.com/b/QhMSNx/ZrBUE
http://paperpile.com/b/QhMSNx/ZrBUE
http://paperpile.com/b/QhMSNx/ZrBUE
http://dx.doi.org/10.1371/journal.pcbi.1002216
http://paperpile.com/b/QhMSNx/aiXr1
http://paperpile.com/b/QhMSNx/aiXr1
http://paperpile.com/b/QhMSNx/aiXr1
http://dx.doi.org/10.1093/bioinformatics/btp352
http://paperpile.com/b/QhMSNx/90pMK
http://paperpile.com/b/QhMSNx/yGyFW
https://developer.github.com/v3/
http://paperpile.com/b/QhMSNx/0is9T
https://github.com/burnash/gspread
http://paperpile.com/b/QhMSNx/yTakO
http://pycurl.io/
http://paperpile.com/b/QhMSNx/xBrNz
https://github.com/tylertreat/BigQuery-Python
http://paperpile.com/b/QhMSNx/Kh7wf
http://paperpile.com/b/QhMSNx/Kh7wf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://paperpile.com/b/QhMSNx/5IaNg
http://paperpile.com/b/QhMSNx/5IaNg
http://dx.doi.org/10.18637/jss.v040.i13
http://paperpile.com/b/QhMSNx/7eenc

41

2017. Available: ​https://market.android.com/details?id=book-qtcnDwAAQBAJ

17. cloc [Internet]. Github; Available: ​https://github.com/AlDanial/cloc

18. Wikipedia contributors. List of programming languages by type. In: Wikipedia, The Free
Encyclopedia [Internet]. 12 Dec 2017 [cited 15 Mar 2018]. Available:
https://en.wikipedia.org/w/index.php?title=List_of_programming_languages_by_type&oldid=
814994307

19. Wikipedia contributors. Comparison of type systems. In: Wikipedia, The Free Encyclopedia
[Internet]. 5 Sep 2017 [cited 15 Mar 2018]. Available:
https://en.wikipedia.org/w/index.php?title=Comparison_of_type_systems&oldid=799049191

20. Strømgren C. Genderize.io | Determine the gender of a first name [Internet]. [cited 25 Jan
2018]. Available: ​https://genderize.io/

21. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal.
1948;27: 379–423. doi:​10.1002/j.1538-7305.1948.tb01338.x

22. Campbell K, Mínguez-Vera A. Gender Diversity in the Boardroom and Firm Financial
Performance. J Bus Ethics. Springer Netherlands; 2008;83: 435–451.
doi:​10.1007/s10551-007-9630-y

23. Mínguez-Vera A, Martin A. Gender and management on Spanish SMEs: an empirical
analysis. The International Journal of Human Resource Management. Routledge; 2011;22:
2852–2873. doi:​10.1080/09585192.2011.599948

24. Boost C++ Libraries [Internet]. [cited 18 Mar 2018]. Available: ​http://www.boost.org/

25. Ray B, Posnett D, Filkov V, Devanbu P. A large scale study of programming languages and
code quality in github. Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM; 2014. pp. 155–165.
doi:​10.1145/2635868.2635922

http://paperpile.com/b/QhMSNx/7eenc
https://market.android.com/details?id=book-qtcnDwAAQBAJ
http://paperpile.com/b/QhMSNx/6txDp
https://github.com/AlDanial/cloc
http://paperpile.com/b/QhMSNx/nuoTs
http://paperpile.com/b/QhMSNx/nuoTs
https://en.wikipedia.org/w/index.php?title=List_of_programming_languages_by_type&oldid=814994307
https://en.wikipedia.org/w/index.php?title=List_of_programming_languages_by_type&oldid=814994307
http://paperpile.com/b/QhMSNx/5v3Ca
http://paperpile.com/b/QhMSNx/5v3Ca
https://en.wikipedia.org/w/index.php?title=Comparison_of_type_systems&oldid=799049191
http://paperpile.com/b/QhMSNx/D6xjN
http://paperpile.com/b/QhMSNx/D6xjN
https://genderize.io/
http://paperpile.com/b/QhMSNx/6QyjP
http://paperpile.com/b/QhMSNx/6QyjP
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://paperpile.com/b/QhMSNx/qDqjm
http://paperpile.com/b/QhMSNx/qDqjm
http://paperpile.com/b/QhMSNx/qDqjm
http://dx.doi.org/10.1007/s10551-007-9630-y
http://paperpile.com/b/QhMSNx/x8fEC
http://paperpile.com/b/QhMSNx/x8fEC
http://paperpile.com/b/QhMSNx/x8fEC
http://dx.doi.org/10.1080/09585192.2011.599948
http://paperpile.com/b/QhMSNx/4WfKl
http://www.boost.org/
http://paperpile.com/b/QhMSNx/7wcL
http://paperpile.com/b/QhMSNx/7wcL
http://paperpile.com/b/QhMSNx/7wcL
http://paperpile.com/b/QhMSNx/7wcL
http://dx.doi.org/10.1145/2635868.2635922

